

US009160349B2

(12) United States Patent

(10) Patent No.: US 9

US 9,160,349 B2 Oct. 13, 2015

(54) DIE LOCATION COMPENSATION

(75) Inventor: Yantao Ma, Boise, ID (US)

(73) Assignee: Micron Technology, Inc., Boise, ID

(US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 869 days.

(21) Appl. No.: 12/548,883

(22) Filed: Aug. 27, 2009

(65) Prior Publication Data

US 2011/0050303 A1 Mar. 3, 2011

(51) Int. Cl.

G06F 1/04 (2006.01)

H03L 7/081 (2006.01)

G11C 7/22 (2006.01)

G11C 29/02 (2006.01)

G11C 5/02 (2006.01)

(52) U.S. Cl.

(58) Field of Classification Search

CPC ... H03L 7/0814; H03L 7/0812; H03L 7/0805; H03L 7/087; G11C 7/222 USPC327/158, 161, 295 See application file for complete search history.

(56) References Cited

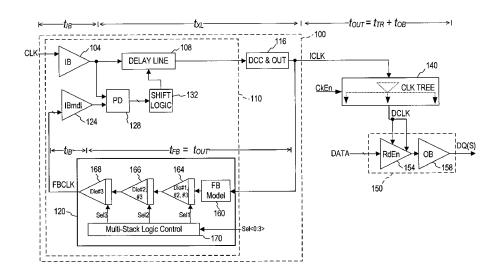
U.S. PATENT DOCUMENTS

5,122,679	A *	6/1992	Ishii et al 327/147
5,565,816	A *	10/1996	Coteus 331/2
5,570,054	A *	10/1996	Takla 327/292
5,670,903	A *	9/1997	Mizuno 327/158
5,751,665	A *	5/1998	Tanoi 368/120
5,852,640	A *	12/1998	Kliza et al 375/356
5,949,262	A *	9/1999	Dreps et al 327/156
6,323,714	B1*	11/2001	Naffziger et al 327/295
6,448,661	В1	9/2002	Kim et al 257/777
6,605,969	B2	8/2003	Mikhalev et al.
6,744,287	B2 *	6/2004	Mooney 327/108
6,791,175	B2	9/2004	Matsuo et al 257/686
6,991,964	B2	1/2006	Matsuo et al 438/109
6,996,026	B2 *	2/2006	Brox et al 365/189.15
7,015,741	B2 *	3/2006	Tschanz et al 327/295
7,161,400	B2 *	1/2007	Nguyen et al 327/155
			a ac

(Continued) OTHER PUBLICATIONS

International Search Report and Written Opinion for Int'l Application No. PCT/US10/044123 dated Feb. 25, 2011, 13 pages.

(Continued)


Primary Examiner — Quan Tra

(74) Attorney, Agent, or Firm — Dorsey & Whitney LLP

(57) ABSTRACT

Embodiments are described that compensate for a difference in a characteristic (e.g., of performance or operation) of a semiconductor device that is a function of the location of a die in a device. In one embodiment, a clock circuit may generate a clock signal having a timing that varies with the location of a die so that signals are coupled from the die to a substrate at the same time despite differences in the signal propagation time between the substrate and the various die. In other embodiments, for example, differences in the termination impedance or driver drive-strength resulting from differences in the location of a die in a stack may be compensated for. Other embodiments are also disclosed.

27 Claims, 6 Drawing Sheets

(56) References Cited

U.S. PATENT DOCUMENTS

7,729,197	B2 *	6/2010	Bell et al 365/233.12			
7,971,088	B2 *	6/2011	Jung et al 713/503			
2003/0071669	A1*	4/2003	Liu et al 327/158			
2003/0137335	A1	7/2003	Hofstra 327/291			
2004/0041604	A1	3/2004	Kizer et al 327/157			
2005/0051903	$\mathbf{A}1$	3/2005	Ellsberry et al.			
2005/0231247	A1*	10/2005	Cho 327/158			
2006/0267212	A1	11/2006	Shibata et al 257/777			
2008/0043548	$\mathbf{A}1$	2/2008	Jung et al.			
2008/0204091	$\mathbf{A}1$	8/2008	Choo et al.			
2008/0258700	A1	10/2008	Block et al 323/318			
2009/0154285	$\mathbf{A}1$	6/2009	Pyeon			
OTHER PUBLICATIONS						

English translation of Taiwanese Office Action received on May 13, 2014 for Appln No. 099128113.

"A Three-Dimensional Stacked-Chip Star-Wiring Interconnection for a Digital Noise-Free and Low-Jitter I/O Clock Distribution Network", IEEE, vol. 16, No. 12, Dec. 2006, 651, 653.

"An Ultra-Low-Power Fast-Lock-in Small-Jitter All-Digital DLL", IEEE International vol. 1 10-10, Feb. 2005, 28, 422, 607.

"Chip-Package Hybrid Clock Distribution Network and DDL for Low Jitter Clock Delivery", IEEE Journal, vol. 41 No. 1, Jan. 2006, 274, 286.

Extended Search Report for European Appl No. 10814131.8 dated Jul. 31, 2013.

Notice of Preliminary Rejection for KR Appl No. 10-2012-7006055, Issued Dec. 12, 2013.

Notice of Preliminary Rejection for Korean Application No. 10-2012-7006055, mailed Apr. 9, 2013.

First Office Action for Appl No. CN201080037704.6, Issued Dec. 25, 2013.

^{*} cited by examiner

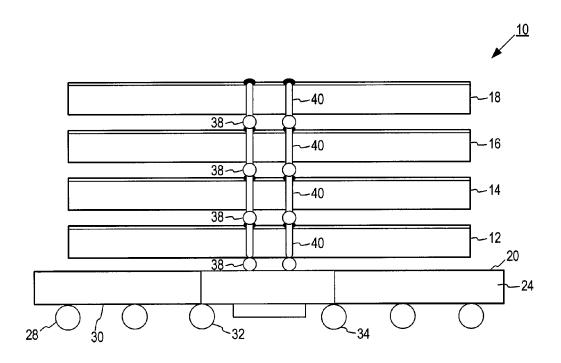


Figure 1

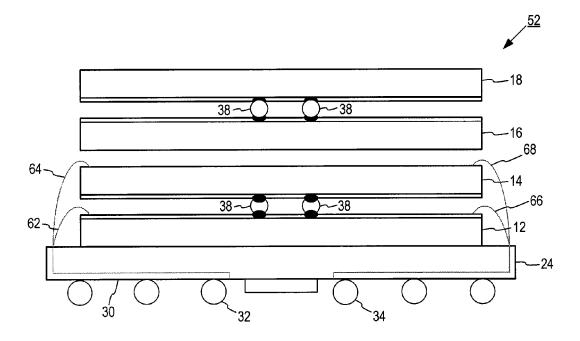


Figure 2

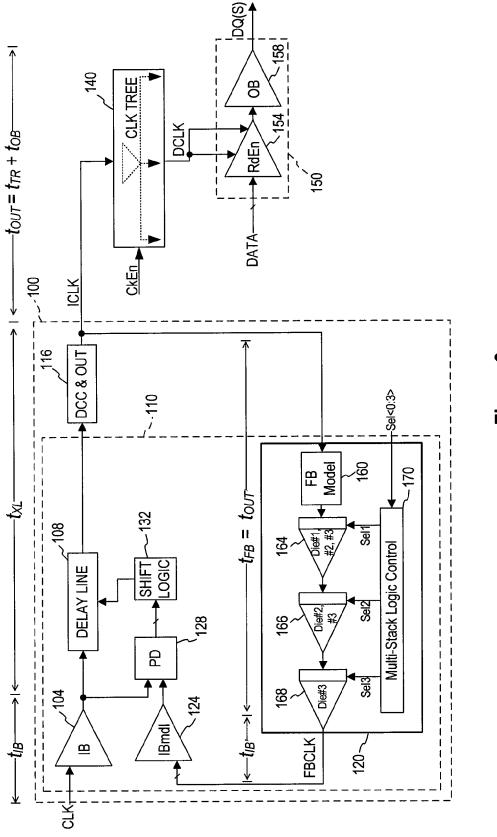
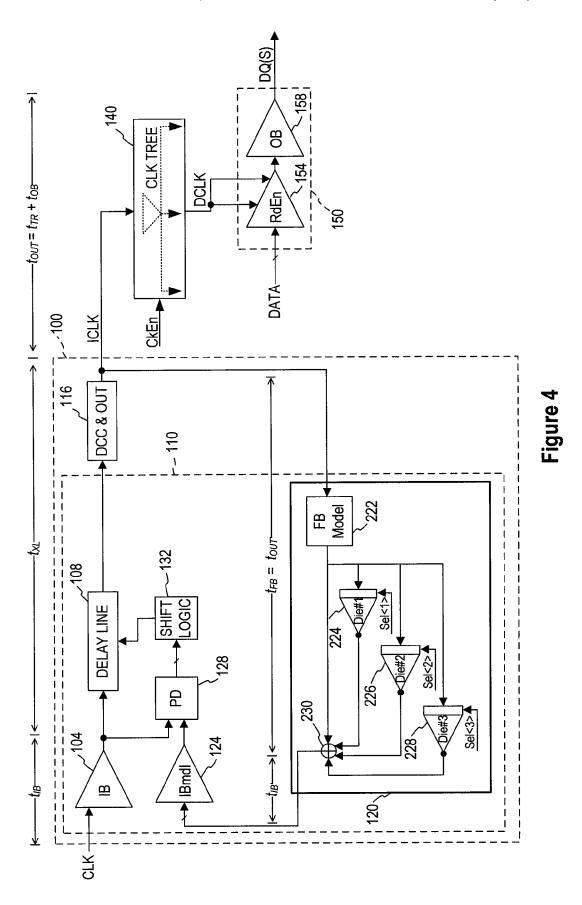



Figure 3

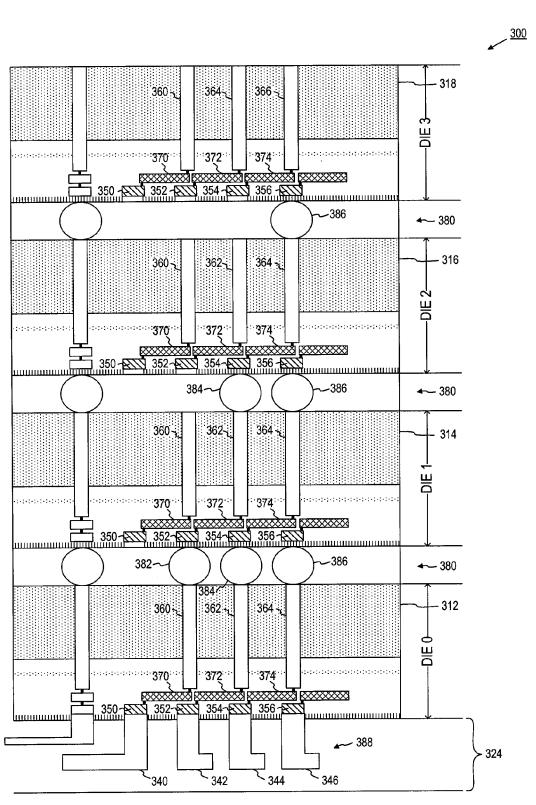


Figure 5

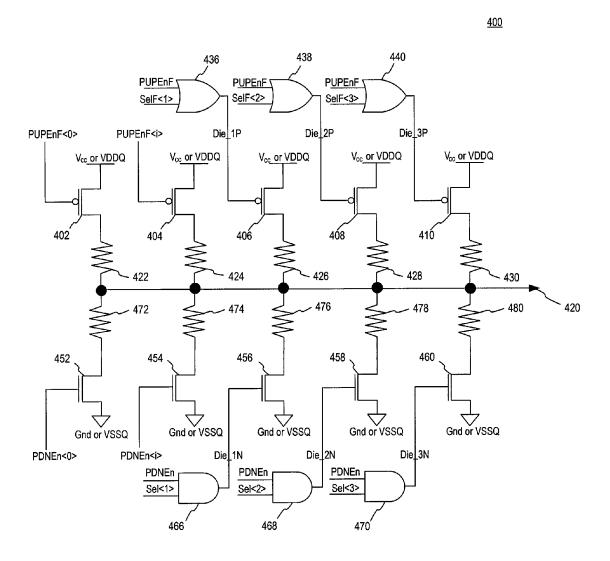
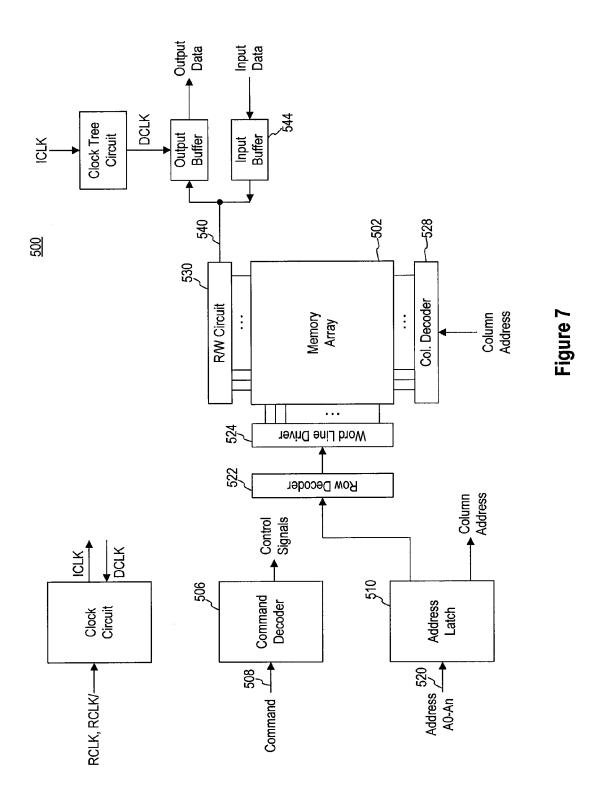



Figure 6

DIE LOCATION COMPENSATION

TECHNICAL FIELD

Embodiments of this invention relate to devices that have a 5 plurality of semiconductor die, and more particularly, in one or more embodiments, to stacked integrated circuit die and clock signals.

BACKGROUND OF THE INVENTION

Periodic signals are used in a variety of electronic devices. One type of periodic signal is a clock signal that can be used to establish the timing of a signal or the timing at which an operation is performed on a signal. For example, data signals 15 are typically coupled to and from memory devices, such as synchronous dynamic random access memory ("SDRAM") devices, in synchronism with a clock signal or data strobe signal. More specifically, read data signals are typically coupled from a memory device in synchronism with either a 20 clock signal or a read data strobe signal that may be synchronous with a clock signal. The read data strobe signal is normally generated by the same memory device that is outputting the read data signals. Write data signals are typically latched into a memory device in synchronism with a clock signal or a 25 write data strobe signal that may also be synchronous with a clock signal. Other signals generated in electronic devices, such as memory devices or memory controllers, are often synchronized or triggered by an internal clock signal. For example a clock signal may be used in a memory device for 30 latching write data and/or outputting read data. The clock signal is typically generated in the memory device from an internal clock signal using a delay-lock loop.

One of the advantages of using a delay lock loop to generate an internal clock signal in an integrated circuit is that 35 various delays in an integrated circuit can be modeled by delay model circuits and used in the feedback path of a delay lock loop to compensate for such delays. For example, the delay in coupling a clock signal through a clock tree to a read data latch can be modeled by a model delay in the feedback 40 path of a delay lock loop that generates the clock signal. As a result, read data may be latched and thus output from the memory device substantially in synchronism with a clock signal despite a propagation delay of a clock signal through the clock tree.

While various techniques such as a delay lock loop containing a model delay may alleviate to some extent problems resulting from propagation delays in integrated circuits, the problems of signal propagation delays may become more severe in a semiconductor device using multiple semiconduc- 50 tor die, such as where the multiple die are stacked. More specifically, even if propagation delays can be compensated for in each die, there may still be propagation delays in coupling signals between each die and external electrical connectors (e.g., terminals) of the integrated circuit device. 55 With reference to FIG. 1, a semiconductor device 10 may include 4 semiconductor die 12, 14, 16, and 18, some of which may be identical to each other or different from each other. The die 12-18 may be mounted on a surface 20 of a substrate 24, and external terminals in the form of a ball grid 60 12-18 farther away from the ball grid array. array 28 may be mounted on an opposed surface 30 of the substrate 24. One of the balls 32 of the ball grid array 28 may receive a clock signal (CLK"), and a plurality of other balls 34 (only one is shown) may receive and transmit data signals. Individual balls of the array ball grid array 28 may be coupled 65 ductor device using a plurality of stacked die. to the die 12-18 through respective internal balls 38 positioned against each surface of the die 12-18 between adjacent

2

die or between the die 12 and the substrate 24. Signals may be coupled from one surface of the die 12-18 to an opposite surface by internal electrical connectors such as through silicon vias ("tsv") 40.

FIG. 2 shows a semiconductor device 52 that also includes the stacked die 12-18. The semiconductor device 52 may be substantially similar to the semiconductor device 10 of FIG. 1. Therefore, in the interest of brevity and clarity, identical reference numerals will be used to identify identical components. The device 52 differs from the device 10 by using bond wires 62, 64, 66, 68 as internal electrical connectors to couple all or some signals from the substrate 24 to the die 12-18. However, the device 52 may also use the internal balls 38 to couple signals between the die 12-18.

Regardless of whether the signal coupling technique shown in FIG. 1 or FIG. 2 is used or some other technique is used, the propagation delay in coupling signals between the external electrical connectors 28 and the die 12-18 may differ from die-to-die. For example, the CLK signal will be received by the die 12-18 with increasingly larger delays from the die 12 to the die 18. As a result, for example, read data may be output from the die 12-18 at increasing distances from the electrical connectors 28. Moreover, the propagation delay in coupling the read data from each of the die 12-18 to the electrical connectors 28 may increase from the die 12 to the die 18. Insofar as the read data from the devices 10, 50 may be latched by an external device in synchronism with the CLK signal or some other signal, the "data eye" during which the read data is valid may become increasingly later for die 12-18 farther away from the electrical connectors 28. More importantly, the overlap in the respective data eyes from the die 12-18 may set the overall data eye for the device 12-18 during which read data from the devices 10, 50 is valid regardless of which die originated the read data. The size of the data eye may therefore become smaller as the common data valid time overlaps in the respective data eyes from the die 12-18 become smaller. A smaller data eye may make it more difficult for an external device to correctly latch read data from the devices 10, 50. This skewed data eve problem gets worse when duty cycle distortion is present. Similar types of problems may exist for other types of signals, such as write data signals.

The problems resulting from differences in the connections between the electrical connectors 28 and each of the die 12-18 may also result in problems other than signal propagation problems, such as output slew rate skew, ZQ calibration termination impedance mismatch, etc. For example, the longer signal paths between the electrical connectors 28 and the die farther away from the electrical connectors 28 may increase the resistance between the electrical connectors 28 and the die 12-18 farther away from the electrical connectors. As a result, the "drive strength" of signal transmitters on the die 12-18 may become increasing less away from the electrical connectors 28. The increased resistance between the electrical connectors 28 and the die 12-18 farther away from the electrical connectors 28 may also cause the termination impedance of the balls of aball grid array, for example, to be larger for die

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a schematic cross-sectional view of a semicon-

FIG. 2 is a schematic cross-sectional view of another semiconductor device using a plurality of stacked die.

FIG. 3 is a schematic diagram showing an embodiment of a clock circuit that may provide an internal clock signal to a clock tree in a semiconductor die.

FIG. **4** is a schematic diagram showing another embodiment of a clock circuit that may provide an internal clock signal to a clock tree in a semiconductor die.

FIG. 5 is a schematic cross-sectional view of an embodiment configured to generate signals indicative of the position of a die in a stack.

FIG. **6** is a schematic diagram showing an embodiment of ¹⁰ a compensation circuit that may be used to compensate for drive strength and termination impedance variations resulting from difference in the location of stacked semiconductor die.

FIG. 7 is a block diagram of an embodiment of a memory die including an embodiment of a clock circuit.

DETAILED DESCRIPTION

A locked-loop, such as a delay lock loop, may be used to compensate for disparate signal propagation delays between 20 external electrical connectors (e.g., terminals, contacts, etc.), such as the ball grid array 28 (FIGS. 1 and 2), and a plurality of die. As shown in FIG. 3, a clock circuit 100 may use a delay lock loop ("DLL") 110 receiving an input clock ("CLK") signal to provide an internal clock signal ("ICLK") to a clock 25 tree 140. When enabled by an active CkEn signal, the clock tree 140 may distribute the ICLK signal to a variety of circuits for a variety of uses. For example, as shown in FIG. 3, the ICLK signal may be used to provide a data clock ("DCLK") signal to an output buffer 150. The output buffer 150 may 30 include a data register 154 that is clocked by the DCLK signal and/or its complementary signal to provide data signals ("Data") to an output buffer circuit 158 to output read data ("DQ") signals (only one is shown). As explained above with reference to FIGS. 1 and 2, the read DQ signals may be routed 35 from each of the die 12-18 to the electrical connectors of a device, such as devices 10 and 52, including the clock circuit

The clock circuit 100 may also include a duty cycle correction (DCC) circuit and output buffer 116 to ensure that the 40 duty cycle of the ICLK signal is at substantially 50%. The ICLK signal may also be coupled though a feedback path, which may include a feedback FB Model Delay Unit 120. A feedback clock ("FBCLK") signal, which may be a delayed version of the ICLK signal, may be coupled through an input 45 buffer ("IB") model delay 124 to an input of a phase detector 128. The phase detector 128 detects a phase difference between the signals applied to its input and outputs a phase error signal indicative of the phase difference between the input signals. This phase error signal may be provided to shift 50 logic 132 that generates a control signal based on the phase error signal to adjust the delay of a DLL delay line 108 to which the CLK signal is applied. The delay of the delay line 108 may be increased or decreased in order to synchronize the inputs of the phase detector 128. When synchronized, the 55 DLL 110 is said to be "locked."

The goal of the clock circuit **100** is to output the DQ signals to respective externally accessible terminals, such as respective balls of the ball grid array **28**, in synchronism with a CLK signal applied to an externally accessible terminal, such a 60 respective ball of the ball grid array **28**. As mentioned above, when the DLL **110** is locked, the signals applied to the phase detector **128** will be synchronized with each other. However, the read data DQ may be output from the output buffer **150** after a delay equal to the sum of a propagation delay t_{TR} 65 through the clock tree **140** and a delay t_{OB} through the output buffer circuit **150**. The DQ signals may then be output but

4

may be delayed by a propagation delay to from one of the die 12-18 to the external terminals such as the ball grid array 28. Thus, the DQ signals may be output from the semiconductor device 10 after a delay of $t_{TR}+t_{OB}+t_{O}$ from the signal that the input buffer 104 applies to the delay line 108. The delay of the DQ signals being applied to the external terminals of the device 10 relative to the CLK signal applied to the external terminals may be further increased by the propagation delay t, of the CLK signal from the external terminals to the die 12-18 as well as the propagation delay t_{IB} through the input buffer 104. The functions of the IB model delay 124 and the FB Model Delay Unit 120 are to compensate for these delays so the DQ signals at the external DQ terminals of the device are synchronized to the CLK signal at the external CLK terminal of the device, such as one of devices 10 or 52. The IB model delay 124 models the propagation delay of the input buffer 104 so that, if the signals applied to the inputs of the phase detector 128 are synchronized, the FBCLK signal will be synchronized to the CLK signal. The remaining delays discussed above are compensated for by the FB Model Delay Unit 120. Specifically, if the delay of the FB Model Delay is equal to $t_{TR} + t_{OB} + t_O + t_I$ and the FBCLK signal is synchronized to the CLK signal at the input of the buffer 104, the ICLK signal will lag the CLK signal by $t_{XL}=N*t_{CK}-(t_{TR}+t_{OB}+t_{O}$ t_r), where N is the DLL total clock loop number. As a result, the DQ signals may be applied to the external terminals of the device in synchronism with the CLK signals applied to the external terminals of the device.

Unfortunately, while the propagation delay t_{TR} of the clock tree 140 and the propagation delay t_{OB} of the output buffer 150 may be substantially the same for all of the die 12-18, the propagation delay t₁ of the CLK signal from the external DQ terminals of the device and the propagation delay to from the die 12-18 to the external DQ terminals of the device may be different for each location of the die 12-18. Specifically, the propagation delay of the CLK signal for the die 12 will be t₁₀, the propagation delay for the die 14 will be $t_{I_0}+t_{I_1}$, the propagation delay for the die 16 will be $t_{I_0}+t_{I_1}+\overline{t_{I_2}}$, and the propagation delay for the die 18 will be $t_{I_0}+t_{I_1}$, $+t_{I_2}+t_{I_3}$. The propagation delay of the DQ signals for the die 12 will be $t_{O=0}$, the propagation delay for the die 14 will be $t_{O=0}+t_{O=1}$, the propagation delay for the die 16 will be $t_{O_0} + t_{O_1} + t_{O_2}$, and the propagation delay for the die 18 will be $t_{O=0}$ + t_{O 1}, +t_{O 2}+t_{O 3}. The FB Model Delay Unit **120** may compensate for all of these differences in propagation delays by including a FB Model circuit 160 and a plurality of switchable delays 164, 166, 168 that may be selectively enabled. When enabled, the switchable delay 164 may provide a delay of $t_{I-1}+_{O-1}$, the switchable delay 166 may provide a delay of $\mathbf{t}_{I_{-2}}^{-} + \mathbf{t}_{O_{-2}}^{-}$, and the switchable delay 168 may provide a delay of $t_{I_{-3}}+_{O_{-3}}$. The switchable delays 164-168 may be enabled by respective select signals Sel 1-Sel 3 from a Multi-Stack Logic Control circuit 170, which, in turn, may receive a 4-bit Sel<0: 3> signal. Examples of techniques for generating the Sel<0: 3> signal will be provided below, it being understood that other techniques may also be used.

The delay of the FB Model circuit **160** may, for example, be equal to the sum of the propagation delay $t_{Z_{-0}}$ of the CLK signal from an external terminal of the device **10**, **52** to the die **12**, the propagation delay $t_{Q_{-0}}$ of the DQ signals from the die **12** to an external terminal of the device, the delay t_{TR} of the clock tree **140**, and the delay t_{QB} of the output buffer **150**.

In operation, the Sel<0:3> signal may identify the location of the die 12-18 relative to the external electrical connector(s) of the device, such as one of devices 10, 52. For Example, the Sel<0:3> signal may be decoded as shown in Table A below.

STACK POSITION	Sel<0:3>	Sel1	Sel2	Sel3
0	000	0	0	0
1	100	1	0	0
2	010	1	1	0
3	001	1	1	1

As shown in Table A, none of the switchable delays are enabled for the die 12 in stack position 0, only the switchable 10 delay 164 is enabled for the die 14 in stack position 1, both switchable delays 164 and 166 are enabled for the die 16 in stack position 2, and all of the switchable delays 164-168 are enabled for the die 18 in stack position 3. As a result, the delays provided by the FB Model Delay Unit 120 are as shown in Table B, below. switchable delays may be the sam delays used in the series coupled increasingly larger delays as expl the delay of a first switchable delay of a second switchable delay of a second switchable delay of a second switchable delay of a third be $t_{L_1} + t_{D_2} + t_{D_2} + t_{D_3} + t_{D_3}$. The FB Model 222 may also pro-

TABLE B

DIE	DELAY
14	$\begin{array}{l} \mathbf{t}_{IR} + \mathbf{t}_{OB} + \mathbf{t}_{I_{-0}} + \mathbf{t}_{O_{-0}} \\ \mathbf{t}_{IR} + \mathbf{t}_{OB} + \mathbf{t}_{I_{-0}} + \mathbf{t}_{I_{-1}} + \mathbf{t}_{O_{-0}} + \mathbf{t}_{O_{-1}} \\ \mathbf{t}_{IR} + \mathbf{t}_{OB} + \mathbf{t}_{I_{-0}} + \mathbf{t}_{I_{-1}} + \mathbf{t}_{I_{-2}} + \mathbf{t}_{O_{-0}} + \mathbf{t}_{O_{-1}} + \mathbf{t}_{O_{-2}} \\ \mathbf{t}_{IR} + \mathbf{t}_{OB} + \mathbf{t}_{I_{-0}} + \mathbf{t}_{I_{-1}} + \mathbf{t}_{I_{-2}} + \mathbf{t}_{I_{-3}} + \mathbf{t}_{O_{-0}} + \mathbf{t}_{O_{-1}} + \mathbf{t}_{O_{-2}} + \\ \mathbf{t}_{O_{-3}} \end{array}$

The variable delay of the FB Model Delay Unit 120 may therefore allow the DQ signals to be output from external terminals of the device, such as respective balls of the ball grid array 28, in synchronism with the CLK signal being applied 30 to an external terminal of the device, such as one of the balls of the ball grid array 28.

In the embodiment of the clock circuit **100** shown in FIG. **3**, the switchable delays **14-18** are coupled in series with each other, and their delays may be substantially equal to each 35 other since the delay from one die **12-18** to the next may be substantially equal. In another embodiment, the switchable delays **14-18** coupled in series with each other may provide increasingly larger delays when they are enabled. In such an embodiment, if the switchable delays were not enabled, they 40 would provide substantially no delay. Therefore, the delay of a first switchable delay may be $t_{L_1} + t_{O_{-1}}$, the delay of a second switchable delay may be $t_{L_1} + t_{O_{-1}} + t_{L_2} + t_{O_{-2}}$, and the delay of a third switchable delay may be $t_{L_1} + t_{O_{-1}} + t_{L_2} + t_{D_{-1}} + t_{L_2} + t_{D_{-2}}$. For this embodiment, the Sel<0:3> signal 45 could be decoded as shown in Table C, below.

TABLE C

STACK POSITION	Sel<0:3>	Sel1	Sel2	Sel3
0	000	0	0	0
1	100	1	0	0
2	010	0	1	0
3	001	0	0	1

The resulting delays provided by the FB Model Delay would therefore be the same as shown in Table B.

Although the previously described embodiments of the FB Model Delay Unit 120 use switchable delays that may be coupled in series with each other, in another embodiment of a 60 clock circuit 200 shown in FIG. 4 the FB Model Delay Unit 120 may use switchable delays coupled to each other in parallel. The clock circuit 200 uses many of the same components that are used in the clock circuit 100 of FIG. 3. Therefore, in the interests of brevity and clarity, corresponding components have been provided with the same references numerals, and descriptions of their functions and operation

6

will not be repeated. The clock circuit **200** differs from the clock circuit **100** by including a the FB Model Delay Unit **220** that uses switchable delays **224**, **226**, **228** that may be coupled in parallel with each other between the output of a FB Model **222** and a 4-input multiplexer **230**. The multiplexer **230** may have a 4-bit control input that receives the Sel<0:3> signal to select the output from either one of the FB Model **160** or one of the switchable delays **224**, **226**, **228**. The delays of the switchable delays may be the same delays as the switchable delays used in the series coupled switchable delays having increasingly larger delays as explained above. Specifically, the delay of a first switchable delay **224** may be $t_{r_1} + t_{o_{-1}}$, the delay of a second switchable delay **226** may be $t_{r_1} + t_{o_{-1}}$, the delay of a third switchable delay **228** may be $t_{r_1} + t_{o_{-1}} + t_{o_{-1}$

The FB Model 222 may also provide the same delay as the FB Model 160 used in the clock circuit 100 except that the FB Model 160 may provide an additional delay T_{MUX} corresponding to the propagation delay through the multiplexer 20 230. The resulting delays provided by the FB Model Delay Unit 220 would therefore be the same as the delays provided by the FB Model Delay Unit 120 except for the additional delay T_{MUX}.

Although the foregoing describes specific embodiments of
locked-loops in the form of delay-lock loops, other types of
locked-loops, such as phase-lock loops, may also be used to
compensate for differences in signal propagation delays in
other embodiment.

A variety of techniques may be used to generate the Sel<0: 3> signals to provide indications of the locations of each die 12-18 with respect to the external electrical connectors of a device (e.g., to provide an indication of the position of a die within a stack). For example, an integrated circuit using the clock circuits 100, 200 or a clock circuit according to some other embodiment may include a programmable option, such as an array of antifuses, that may be programmed when a semiconductor device is packaged to designate the position of each of the die 12-18. Other techniques may be used to automatically generate the Sel<0:3> signals to indicate die position.

For example, another technique that may be used to generate the Sel<0:3> signals is shown in FIG. 5. As shown in FIG. 5, a semiconductor device 300 may include 4 semiconductor die 312, 314, 316, and 318 that may each include a clock circuit, such as the clock circuit 100 shown in FIG. 1 or some other embodiment of a clock circuit. The die 312 may be mounted on a substrate 324 that includes a plurality of electrical contacts, such as contacts 338 (only 5 of which are shown in FIG. 5). Four of these contacts 338, i.e., 340, 342, 50 **344**, **346** may be coupled to respective contacts **350**, **352**, **354**, 356 fabricated on one surface of the die 312. Each of the contacts 350-354 may be coupled to a respective tsv 360, 362, 364, which may be offset from the respective ones of the contacts 350-354 by respective laterally extending conduc-55 tors **370**, **372**, **374**. However, the contact **356** is not connected to any tsv.

Each of the die 314, 316, 318 may be identical to the die 312. Each of the die 314-318 may be coupled to an underlying die by a respective ball grid array. However, the number of balls 382-386 in each of the arrays 380 that are used to couple the contacts 350-356 to the tsv's 360-364 of the underlying die 312-316, respectively, may continuously decrease from the die 312 to the die 316. Thus, three balls 382-386 may be used to couple the tsv's 360-364 of the die 312 to the respective contacts 352-356 of the die 314, but only two balls 384, 386 may be used to couple the tsv's 362, 364 of the die 314 to the respective contacts 354, 356 of the die 316. Similarly, only

one ball 386 may be used to couple the tsv 364 of the die 316 to the contact 356 of the die 318. As a result, all 4 contacts 350-356 of the die 312 are coupled to the contacts 340-346 of the substrate 324, only 3 contacts 352-356 of the die 314 are coupled to the contacts 342-346, only 2 contacts 354, 356 of 5 the die 316 are coupled to the contacts 342-346, and only 1 contact 356 of the die 318 is coupled to the contacts 342-346. If the contacts 340-346 are biased to a first voltage, such as a supply voltage V_{CC} , to represent a logic "1," and a particular bias voltage, such as 0 volts, to represent a logic "0" is applied to each of the contacts 340-346 of the substrate 324, the 4 voltage levels present on each of the contacts 350-356 may be used to provide the 4 bits of the Sel<0:3> signal (FIGS. 3 and 4). In such case the Sel<0:3> signal for the die 312 will be "0000," the Sel<0:3> signal for the die 314 will be "1000," the 15 Sel<0:3> signal for the die **316** will be "1100," and the Sel<0: 3> signal for the die **318** will be "0111." Thus, the Sel<0:3> signal identifying the location of each die 312-318 in the stack may be automatically generated. However, other techniques may alternatively be used to generate the Sel<0:3> signal.

The embodiments described above compensate for variations in the signal propagation time between the substrate 24 and the die 12-18 resulting from differences in the locations of the die in a device, such as a stacked device 10, 52. However, variations other than signal propagation delay variations 25 may exist for different die 12-18 in the stack. Therefore, viewed more broadly, embodiments may compensate for these other variations resulting from differences in the locations of the die 12-18. More specifically, in other embodiments a signal, such as the Sel<0:3> signal, may provide an 30 indication of the location of a die in the stack. A compensation circuit, such as the clock circuits 100, 200, may receive the location indicating signal and may adjust a characteristic (e.g., of operation) of one or more circuits fabricated in the die to compensate for the location-induced variation. For 35 example, the termination impedance of an externally accessible terminal of a die may vary with different locations of the die in a stack because of the conductor impedance may increase as signal paths extending between a die and a substrate become longer for die that are farther from the sub- 40 strate. Similarly, the "drive strength", slew rate of an output driver, such as a data output buffer, may decrease for a die that is farther from the substrate because of the greater conductor length. Various embodiments may be used to compensate for these termination impedance and/or drive strength variations. 45

One embodiment of a compensation circuit 400 that may compensate for both termination impedance and drive strength variations resulting from differences in die location is shown in FIG. 6. The circuit 400 may include a plurality of PMOS pull-up transistors 402-410, which may have their 50 respective sources coupled to a first voltage, such as a supply voltage V_{CC} or VDDQ. The drains of the transistors 402-410 may be coupled to an output terminal 420 through respective resistances 422-430. All or some of the resistances 422-430 may have the same resistance value, although they may also 55 all be different from each other. The gates of the transistors 402, 404 may be coupled to receive respective active-low pull-up signals PUPEnF<0:1> while the gates of the other transistors 406, 408, 410 may be coupled to an output of respective OR-gates 436, 438, 440. The OR-gates 436, 438, 60 440 may each have a first input that receives an active-low pull-up signal PUPEnF and a second input that receives a respective active-low select signal SelF<1:3>

In a similar manner, a plurality of NMOS pull-down transistors **452-460** may have their respective sources coupled to 65 a second voltage, such as ground. The drains of the transistors **452-460** may also be coupled to the output terminal **420**

8

through respective resistances 472-480, such as discrete resistors. Again, all or some of the resistances 472-480 may have the same or different resistance values. The gates of the transistors 452, 454 may be coupled to receive respective active-high pull-down signals PDNEn<0:1> while the gates of the other transistors 456, 458, 460 may be coupled to an output of respective AND-gates 466, 468, 470. As with the OR-gates 436, 438, 440, each of the AND-gates 466, 468, 470 may have a first input that may receive an active-high pull-down signal PDNEn and a second input that may receive a respective active-high select signal Sel<1:3>.

In operation, one or more of the pull-up signals PUPEnF<0:1>, PUPENF signals may be driven low by suitable means such as by a memory device to drive the output terminal 420 high. Alternatively, one or more of the pulldown signals PDNEn<0:1>, PDNEN signals may be driven high by suitable means to drive the output terminal 420 low. The number of transistors 404-410 or 452-460 that are turned ON by the pull-up signals or pull-down signals, respectively, determine both the termination impedance and the drive strength of the transistors. If the compensation circuit 400 is on the die closest to the substrate, i.e., die #0, one or both of the pull-up signals PUPEnF<0:1> may be driven low to drive the output terminal 420 high, and one or both of the pull-down signals PDNEn<0:1> may be driven high to drive the output terminal 420 low. Either the PUPEnF signal or the PDNEn signal may also be driven low or high, respectively, but the SefF<1:3> signals may be inactive high and the Sef<1:3> signals are inactive low so that the respective transistors 406-410 or 456-460 are not turned ON. One the other hand, if the compensation circuit 400 is on die #1, the SefF<1> signal may be low to enable the OR-gate 436 and the Sef<1> signal may be high to enable the AND-gate 466 so that 3 transistors 402-406 are turned ON to drive the output terminal 420 high or 3 transistors 455-456 are turned ON to drive the output terminal 420 low. Similarly, if the compensation circuit 400 is on die #2, the SefF<2> signal may also be driven low (along with the SefF<1> signal) to enable the OR-gates 436, 438, and the Sef<1> and Sef<2> signal may also be driven high to enable the AND-gates 466, 468. As a result, 4 transistors 402-408 may be turned ON to drive the output terminal 420 high or 4 transistors 452-458 may be turned ON to drive the output terminal 420 low. Finally, if the compensation circuit 400 is on die #3, the SefF<3> signal may also be low and the Sef<3> signal may also be high so that all 5 transistors 402-410 are turned ON to drive the output terminal 420 high or all 5 transistors 452-460 are turned ON to drive the output terminal 420 low. In this manner, die farther away from the substrate may be provided with a greater drive strength and an reduced termination impedance.

The compensation circuits according to various embodiments may be used in connection with a wide variety of semiconductor devices. For example, FIG. 7 illustrates an embodiment of a portion of a memory die 500. An embodiment of a clock circuit 550 may be included in the memory die 500. As with the clock circuits 100, 200, the timing of an internal clock signal ICLK generated by the clock circuit 550 may be adjusted as a function of the location of the die 500 in a device, such as a stacked device. The memory die 500 may include an array 502 of memory cells, which may be, for example, DRAM memory cells, SRAM memory cells, flash memory cells, or some other types of memory cells. The memory die 500 may include a command decoder 506 that may receive memory commands through a command bus 508 and may generate corresponding control signals within the memory die 500 to carry out various memory operations. Row and column address signals may be applied to the

memory device 500 through an address bus 520 and provided to an address latch 510. The address latch may then output a separate column address and a separate row address.

The row and column addresses may be provided by the address latch 510 to a row address decoder 522 and a column 5 address decoder 528, respectively. The column address decoder 528 may select bit lines extending through the array 502 corresponding to respective column addresses. The row address decoder 522 may be connected to word line driver **524** that may activate respective rows of memory cells in the array 502 corresponding to received row addresses. The selected data line (e.g., a bit line or bit lines) corresponding to a received column address may be coupled to read/write circuitry 530 to provide read data to a data output buffer 534 via an input-output data bus 540. The clock circuit 550 may provide an ICLK signal to the clock tree circuit 140. In response to the ICLK signal, the clock tree circuit 140 may provide a DCLK signal for timing, for example, to clock the output buffer 534. Although not specifically shown in FIG. 7, the DCLK signal output by the clock tree circuit 140 can be 20 used for timing different components as well. Write data may be applied to the memory array 502 through a data input buffer 544 and the memory array read/write circuitry 530. The command decoder 506 may respond to memory commands applied to the command bus 508 to perform various 25 operations on the memory array 502. In particular, the command decoder 506 may be used to generate internal control signals to read data from and write data to the memory array 502. Circuits that compensate for other location-induced variations in a characteristic (e.g., of performance) of the 30 memory die 500, such as its termination impedance and/or drive strength, may also be used in the memory die 500. For example, such circuit may providing an indication of the location of each of a plurality of semiconductor die. In response to the indication, a characteristic of a circuit of the 35 die may be adjusted to compensate for a location-induced variation. Although specific embodiments have been disclosed, persons skilled in the art will recognize that changes may be made in form and detail without departing from the invention. Such modifications are well within the skill of 40 those ordinarily skilled in the art. Accordingly, the invention is not limited except as by the appended claims.

I claim:

- 1. A semiconductor device having:
- a plurality of semiconductor dice;
- an electrical connector coupled to each of the semiconductor dice: and
- a compensation circuit, the compensation circuit being configured to compensate for differences in the manner 50 in which signals are coupled from each of the semiconductor dice to the electrical connector.
- 2. The semiconductor device of claim 1 wherein the compensation circuit is configured to compensate for differences in the signal propagation delays from each of the semicon- 55 ductor dice to the electrical connector.
- 3. The semiconductor device of claim 2 wherein the compensation circuit comprises:
 - a locked-loop receiving an input periodic signal and configured to generate an output periodic signal, the looked-loop including a phase detector and a feedback path configured to couple a feedback signal to the phase detector; and
 - a delay unit coupled in the feedback path to delay the feedback signal by a delay, the delay unit being configured to receive a select signal and to adjust the delay of the delay circuit as a function of the select signal.

10

- **4**. The semiconductor device of claim **3** wherein the locked-loop comprises a delay lock loop.
- 5. The semiconductor device of claim 3 wherein the delay unit comprises a plurality of delay circuits coupled in series with each other, each of the delay circuits being enabled by a respective select signal to provide a respective delay.
- 6. The semiconductor device of claim 5 wherein the delay of each of the delay units correspond to the signal propagation delay between a respective one of the semiconductor dice and the electrical connector relative to the signal propagation delay between an adjacent one of the semiconductor dice and the electrical connector.
- 7. The semiconductor device of claim 3 wherein the delay unit comprises a plurality of delay circuits coupled in parallel with each other, each of the delay circuits being enabled by a respective select signal to provide a respective delay.
- **8**. The semiconductor device of claim **3**, further comprising a clock tree coupled to receive the output periodic signal from the locked-loop.
- 9. The semiconductor device of claim 8 wherein the delay unit is further configured to compensate for the delay in coupling the output periodic signal through at least part of the clock tree.
- 10. The semiconductor device of claim 1 wherein the compensation circuit is configured to compensate for differences in the termination impedance or drive strength of signal drivers fabricated in each of the semiconductor dice and coupled to the electrical connector.
- 11. The semiconductor device of claim 1 wherein the compensation circuit is configured to compensate for differences in the impedance of the electrical connector respective to each of the semiconductor dice.
- 12. The semiconductor device of claim 1 wherein the compensation circuit comprises:
 - a plurality of resistances coupled to an output terminal; and a respective transistor having its source and drain coupled in series with each of the plurality of resistances between a first voltage and the output terminal, each of the transistors being configured to be switched to a conductive state by a respective select signal.
- 13. The semiconductor device of claim 12, further comprising a plurality of logic circuits, each of the logic circuits having an output coupled to a respective one of the transistors, a first input coupled to receive an enable signal, and a second input coupled to receive the respective select signal.
 - 14. The semiconductor device of claim 12 wherein the compensation circuit further comprises:
 - a second plurality of resistances coupled to the output terminal; and
 - a respective second transistor having its source and drain coupled in series with each of the second plurality of resistances between the output terminal and a second voltage that is complementary to the first voltage, each of the second transistors being configured to be switched to a conductive state by a respective select signal.
 - 15. The semiconductor device of claim 1 wherein the compensation circuit is configured to compensate for differences in the manner in which signals are coupled from one of the semiconductor dice to the electrical connector responsive to a select signal that provides an indication of the location of the respective one of the semiconductor dice in the device.
 - **16**. The semiconductor device of claim **15**, further comprising a programmable option configured to generate the select signal.
 - 17. The semiconductor device of claim 15 wherein each of the semiconductor dice are configured to provide the select signal based on a combination of voltage levels applied to

respective ones of a plurality of electrical contacts of the respective semiconductor dice, and wherein a first set of the electrical contacts of the respective semiconductor dice are located on a first surface of the respective semiconductor dice and a second set of the electrical contacts of the respective 5 semiconductor dice are located on a second surface of the respective semiconductor dice opposite the first surface, at least some of the semiconductor dice having at least one electrical contact in the second set connected to at least one electrical contact in the first set of an adjacent one of the semiconductor dice, the number of electrical contacts in the second set that are connected to respective electrical contacts in the first set varying as a function of the location of the respective semiconductor dice in a semiconductor die stack.

- 18. The semiconductor device of claim 1 wherein the electrical connector is an external electrical connector and wherein at least some of electrical contacts in a first set of a first semiconductor dice are coupled to respective electrical contacts on a surface of a substrate, and wherein an electrical contacts on the surface of the substrate is coupled to the 20 ing for differences in the manner in which a signal is coupled external electrical connector.
- 19. The semiconductor device of claim 17 wherein the electrical contacts in the second set that are connected to respective electrical contacts in the first set of the adjacent one of the semiconductor dice through a ball grid array.
- 20. The semiconductor device of claim 19 wherein the ball grid array comprises a plurality of conductive balls, and wherein the number of balls in the ball grid array vary as a function of the location of the semiconductor dice in the semiconductor dice stack.
- 21. A pair of stacked first and second semiconductor dice comprising:
 - a delay line fabricated in each of the semiconductor dice, each of the delay lines having an input and an output, each of the delay lines being configured to provide a 35 respective delay magnitude;
 - a first set of the electrical contacts located on a first surface of each of the semiconductor dice;
- a second set of the electrical contacts located on a second surface of each of the semiconductor dice opposite the 40 first surface of each of the semiconductor dice, the first and second semiconductor dice being stacked so that the first surface of the first semiconductor die is adjacent the second surface of the second semiconductor die, at least one of the electrical contacts of the second set on the 45 second semiconductor die being connected to at least one of the electrical contacts of the first set on the first semiconductor die, the number of electrical contacts in the second set of the second semiconductor die that are connected to respective electrical contacts in the first set 50 of electrical contacts of the first semiconductor die varying as a function of the location of the second semiconductor die in the semiconductor die stack;
- a phase detector fabricated in each of the semiconductor dice, each of the phase detectors having first and second 55 inputs, the first input being coupled to the input of the respective delay line, each of the phase detectors being operable to cause an adjustment of the delay magnitude of the respective delay line; and
- a delay circuit fabricated in each of the semiconductor dice, 60 each of the delay circuits having an input coupled to the output of the respective delay line and an output coupled

12

to the second input of the respective phase detector, the delay circuit being configured to selectively adjust the delay of the respective delay circuit based on a combination of voltage levels applied to respective ones of a plurality of the electrical contacts of the respective semiconductor dice.

22. A method of coupling signals between a plurality of semiconductor dice and an externally accessible electrical connector to which each of the semiconductor dice is connected, the method comprising:

compensating for differences in the manner in which a signal is coupled from each of the semiconductor dice to the externally accessible electrical connector so that a characteristic of coupling a signal from each of the semiconductor dice to the externally accessible electrical connector is substantially the same for each of the semiconductor dice.

- 23. The method of claim 22 wherein the act of compensatfrom each of the semiconductor dice to the externally accessible electrical connector comprises adjusting the timing at which a signal is transmitted from each of the semiconductor dice to the externally accessible electrical connector as a function of the location of the semiconductor dice with respect to the externally accessible electrical connector.
- 24. The method of claim 22 wherein the act of compensating for differences in the manner in which a signal is coupled from each of the semiconductor dice to the externally accessible electrical connector comprises adjusting the timing at which the signal received by each of the semiconductor dice is captured in the semiconductor dice as a function of the location of the semiconductor dice with respect to the externally accessible electrical connector.
- 25. The method of claim 23 wherein the act of compensating for differences in the manner in which a signal is coupled from each of the semiconductor dice to the externally accessible electrical connector comprises adjusting the drive strength at which the signal is transmitted from each of the semiconductor dice the externally accessible electrical connector as a function of the location of the semiconductor dice with respect to the externally accessible electrical connector.
- 26. The method of claim 22 wherein the act of compensating for differences in the manner in which a signal is coupled from each of the semiconductor dice to the externally accessible electrical connector comprises adjusting the termination resistance of a node of each of the semiconductor dice to which the externally accessible electrical connector is coupled as a function of the location of the semiconductor dice with respect to the externally accessible electrical con-
- 27. A method of coupling signals between a plurality of semiconductor die and an electrical connector, the method comprising:

providing an indication of the location of each of the plurality of semiconductor dice relative to one another; and responsive to the indication, adjusting a characteristic of a circuit of the semiconductor dice to compensate for a location-induced variation.

UNITED STATES PATENT AND TRADEMARK OFFICE **CERTIFICATE OF CORRECTION**

PATENT NO. : 9,160,349 B2 Page 1 of 1

APPLICATION NO. : 12/548883

DATED : October 13, 2015

INVENTOR(S) : Yantao Ma

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In the Claims

Reads Should Read

Column 12, Line 36 "The method of claim 23" -- The method of claim 22--

Column 12, Line 41 "semiconductor dice the externally" --semiconductor dice to the externally--

Signed and Sealed this Twenty-second Day of March, 2016

Michelle K. Lee

Michelle K. Lee

Director of the United States Patent and Trademark Office